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Abstract

\

7 Recent work has highlighted the potential applications of two-
photon coherent states (TCS), also known as squeezed states, in optical
communications and precision measurements. This research program was
aimed at generating TCS l1ight via degenerate four-wave mixing (DFWM),
and verifying the non-classical nature of TCS light via photon-
counting measurementﬁ. The preceding experimental work was supported
by analytical studies of DFWM TCS generation, and quantum photodetection.
In addition, analyses were performed of key proposed TCS applications in
optical communications and phase-sensing interferohetry. Although the
experimental effort did not yield any TCS observations, it did succeed
in providing the first quantum-noise limited measurements obtained from
DFWM. Moreover, the associated theoretical effort clarified pump quantum
noise, probe-conjugate loss, and backward vs forward DFWM issues in TCS
generation. Furthermore, the applications research developed simultane-
ous amplitude and phase uncertainty relations for optical heterodyne
detection, and showed explicitly how to use TCS to surpass the so-called
standard quantum limit (SQL) on position sensing in a gravity-wave

detecting interferometer.
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RESEARCH SUMMARY

A highly stabilized laser produces a 1ight beam in a Glauber coherent
state. This means the beam is endowed with the following quantum fluctua-
tion behavior: photon counting measurements are Poisson distributed hence
the count variance equals the count mean; and homodyne measurements are
Gaussian distrﬁbuted with signal-to-noise ratio equal to four times the
average number of received photons. Furthermore, the observed fluctuation
behavior for any laser, light-emitting diode, or ordinary light source can
be accounted for by averaging the preceding results over a classical ensemble
representing the light beam as a random mixture of coherent states. These
results form the foundation for all of the semiclassical optical detection
and communication analyses.

Recent theory has shown that the generation of light beams with quantum
states of superior fluctuation behavior, relative to Glauber coherent states,
may be possible. These states are called two-photon coherent states (TCS),
or squeezed states. They are basically minimum uncertainty states for the
quadrature components of the electromagnetic field possessing an asymmetric
noise division between the quadratures, so that one quadrature has a "squeezed"
noise variance, i.e., it is less than the coherent state value of 1/4. In
photon counting measurements at high mean counts TCS light can have a count
variance as low as st/3, where Ns is the average number of received photons.
In homodyne measurements, because of the quadrature noise squeezing, TCS
1ight can have a signal-to-noise ratio as high as 4NS(NS+1).

Under this research program, we have undertaken an experimental effort
aimed at generating TCS light, and verifying some of its novel fluctuation
characteristics [1]-[5]. In concert with the experimental activity, we

have worked toward improving the theory behind TCS generation schemes [5]-[7],
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advancing understanding of quantum photodetection (especially as applied to
TCS light) (8], [9], and analyzing potential applications of TCS in optical

communications [10] and phase~sensing interferometry [11], [12].

TCS Generation — Theory
' Two-photon coherent states may be generated, in principle, by a variety

of nonlinear optical processes, including the degenerate parametric ampifier

(DPA) and degenerate four-wave mixing (DFWM). The essence of generating
TCS may be stated simply as follows. For a single-mode field with annihila-

tion operator 5, mix a part of this field with its phase conjugate field

represented by the creation operator 5 to create a new mode represented by
the operator E'such that

C=qua+va , (11.1)

where Iulz - lvlz = 1 ensures that ¢ is an annihilation operator. Then, if
the mode a is in a coherent state (CS), the mode ¢ will be in a TCS. Thus,
a physical process that generates a phase conjugate field for some input
field is a possible candidate for generating TCS light. DFWM is such a

process, and was suggested by Yuen and Shapiro [13] as a possible source of

TCS. In the standard backward DFWM geometry treated in [13], two counter-
propagating pump waves intersect an object (probe) wave at a small angle in : "E

a nonlinear medium possessing a third order (x(3)) nonlinearity. All three

Y )

waves are at the same frequency. A phase-matched interaction in the non-

Tinear medium generates a phase-conjugate (PC) image wave which propagates
in the opposite direction to the object wave. The outputs of the four-wave 9'4 1
mixer can then be separated by means of isolators, and combined through an

optical delay line with the proper phase relationships on a 50/50 beam

splitter. In a classical analysis, the complex field amplitudes, A1 and A2,
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of the image and object waves obey the coupled-mode equations

dA, "
= AT, (1I.2a)
dA * *
——dzz = -ic'A" (11.2b)

* -
where ¢« =2 1mx(3)B]BZ/cn gives the complex coupling constant in terms of the
nondepleted pump waves of complex field amplitudes B1 and 82' Yuen and
Shapiro [13] gave a quantum version of the above treatment assuming that the

pump fields B1 and B2 are strong and can remain classical along with the

(3)

medium described by the third-order nonlinear susceptibility They quan-

tized the object and the image modes replacing A, and A * with the photon

J J
annihilation and creation operators aj and Qj* ,» respectively, for j = 1, 2.
Equation (I1.2) then becomes

da *a

-d-;]_ = g az'f R (II.3a)

da

_2 E R | *2t

= icay (11.3b)
with the following solutions

21(0) = way (L) - va,'(0) , (11.4a)

ay(L) = ua2(0) - 1va oy, (I1.4b)

where y = sec(|x|L), v = e Ptan(|x|L), « = [g|e1°, 31(L) and 32(0) are the
input fields to the four-wave mixer at z = L and z = 0, respectively.
When the outputs of the four-wave mixer are combined through a 50/50

beam splitter to generate two new modes

c

[3,(0) - 1a,(L))/2"/2 (11.5a)

d

[3,(0) + ia,(1) )22, (11.5b)
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the solutions become

c = uein - inn* (11.6a)

d = ud;, - v, ¥ (11.6b)
in terms of

& = [a(L) - ia,(0)1/22 (11.7a)

4 = [ay(L) + a,(0)1/2/2 (11.7b)

which are linear combinations of the input modes to the four-wave mixer.
Equation (II.6) is of the same form as (II.1) and Iulz - [v[z = 1, so that
the modes ¢ and d are in TCS if 31(L) and 32(0) are in CS.

The above analysis indicates that backward DFWM is a source of pure TCS.
Depending upon the phase and magnitude of v, arbitrary noise squeezing is
predicted to be obtained in one of the quadratures of mode ¢ or mode d. In
a real experiment, this is not quite so because of the assumptions made in
arriving at (I1.3). In particular, the pump modes B1 and B2 cannot neces-
sarily be considered classical, and the effects of their quantum amplitude
and phase fluctuations on modes E and a should be calculated. Moreover, the
preceding analysis neglects lass, which is known to have a strong effect on
quantum statistics.

In (5], [6] we have reported our analyses of generalizing the Yuen and
Shapiro model to encompass pump quantum noise in a lossless backward DFWM
setup, and loss on the probe and conjugate beams in backward DFWM in the
absence of pump quantum noise. Both of these studies focused on the quadra-
ture noise squeezing in the output modes E and a from (II1.6). In particular,
for the gquadrature variance <AE1> = <A[KE+E+)/2]2> it was shown that the

Yuen and Shapiro result is obtained in a Tossless case with pump quantum

................................
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noise included if the pump beams are very intense ([B;[ = [B,| — =) the
coupling is very weak (2'1mx(3)/cn-* 0) and the gain is constant
i (|<|L = constant). Thus, pump quantum noise places no fundamental limitation
on TCS generation.

The results obtained for <AE12> in backward DFWM with probe-conjugate
loss were not so favorable. Here it was found that even a moderate amount
of such loss (e.g., loss coefficient y = 0.5/L) severely limited the obtain-
able noise squeezing. Thus, loss presents a severe restriction on the use of
resonant-medium backward JFWM as a TCS generator.

In an attempt to circumvent the preceding limitation, we turned our
attention from backward DFWM to forward DFWM [7]. In forward DFWM, two
strong pump beams propagate at small angles + ¢/2 from the +z axis in a x(3)
medium. A phase matched interaction ensues between probe and conjugate waves

at angles + ¢/2 from the +z axis in a plane obtained by rotating the pump-

.\

beam plane through an arbitrary angle about the z axis. This nominally co-
propagating geometry, when analyzed quantum mechanically along the lines of

the Yuen and Shapiro backward DFWM case, yields

31(L) = u31(o) - 1véé*(o) , (11.8a)

Yo

3" (L) = w3, "(0) + 1v°2,(0) (11.8b) T

for the output annihilation operators at z = L in terms of the input annihila- ' <

tion operators at z = 0, where u = cosh (|x|L), v = e 1% sinn (<L), and

K = |x|e1? Defining new output and input modes via (cf. (I1I.6), (II.7))

-

c

L

[a,(L) - 1‘52(L)]/2V2 , (I1.9a)

d

. L
tat, Sl
RPN S O )

[a,(L) + 1a,(L1)1/2"/2 (11.9b) g
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ettt e e
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and

¢ = B4(0) - 1'5\2(0)]/2”2 , (11.10a)

45, = B,(0) + ay(0)]/21/2 (11.10b)

yields

¢ = e, - \,Ei ¥ (11.17a)

and

TR
(=Y
=
[« W)
+
<
o
—'.

(I1.11b)

Thus, for lossless forward DFWM with no pump quantum noise ideal TCS genera-
) tion results from 50/50 interferometric combination of the two output beams.
We have not explicitly examined the pump quantum noise behavior of for-
ward DFWM; we expect it will mimic that of backward DFWM. We have shown,
i however, that probe-conjugate loss does not present a fundamental limit on
obtainable quadrature noise squeezing from forward DFWM. This is because
the counter-propagating geometry of backward DFWM causes a looping of loss-
| induced quantum noise in the interaction medium that is absent in the
co-propagating geometry of forward DFWM. Thus, forward DFWM is a more promis-

ing TCS generator than is backward DFWM.

TCS Generation - Experiment

We chose to pursue TCS generation experimentally via backward DFWM in

sodium vapor. (This work was initiated before our loss analysis was

(3)

completed.) Because DFWM occurs through the third-order nonlinearity x

of the mixing medium, we employed a pulsed optical system and exploited the

: (3)

resonant enhancement of sodium x

in the vicinity of 589 nm wavelength D2

transition in order to access the high reflectivity regime. Furthermore,

because a pulsed experiment did not lend itself to homodyne detection, we
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used photon counting to look for anti-bunching (i.e., second reduced factorial
moment 95 less than unity) in light that had undergone DFWM. No previous DFWM
experiments had ever tried to look at quantum noise; it turned out that our
initial DFWM quantum-noise experiment was overconstrained by a combination of
factors, as elaborated below.

The experiment comprised three subsystems: a continuous-wave oscillator/
pulsed-amplifier chain dye laser, a heat-pipe oven sodium vapor cell, and a
special purpose photomultipiier tube/computer data acquisition photon counting
setup. The laser system [2] was developed to approach insofar as possible the
stable center-frequency transform-limited pulse train needed for eliminating
classical excess fluctuations in the DFWM conjugate output beams [4]. The
photon counting system [1] was assembled to permit'accurate photon statistics
determination from the nanosecond duration pulses produced by the laser. As
described in [3], [5] background light from the sodium cell had to be reduced
to less than one detected photon per pulse, by means of spatial filtering, -
time gating, and adjustment of DFWM pump strength and pump/probe angular sepa-
ration, in order to make the desired quantum noise measurements. The result
was that we had to operate in a low-reflectivity regime for which Poisson -
statistics (gz=1) were expected. Our measurements confirmed the Poisson
behavior [3], [5], indicating that we were able to reduce excess fluctuations
to acceptably low levels, thus demonstrating the first quantum-limited noise

measurements obtained on a DFWM cutput beam.

Quantum Photodetection

As an adjunct to the detection aspects of the TCS generation work, and
as a foundation for TCS applications research in optical communications and
precision measurements, a number of new theoretical results were deveioped
in the area of quantum photodetection. Building from Cook's photon flux

picture of photodetection [14], we relaxed [8], [9] the quasimonochromatic




...........

-2 -

condition in Yuen and Shapiro's operator representations [15] for direct
detection, .homodyne detection, and heterodyne detection, and extended [8] the
coherent detection results of [15] to include dual detection configurations
(cf. [16]) and local oscillator excess noise. Moreover, the results of [8]
were couched in terms which made comparison with familiar multi-mode semi-
classical shot noise particularly simple. Finally, in [9], we showed that
multi-mode TCS permit heterodyne detection amplitude and phase measurements
to be made simultaneously without being subject to any uncertainty principle.

This phenomenon has applications in precision measurements (see below).

Optical Communications with TCS

Helstrom [17], [18] found the optimum quantum measurement operator for

deciding between equally likely density operators o, and P for the state of

0
a quantized signal field to be as follows. The minimum error probability

decision rule chooses hypothesis Hj (i.e., state pj) when the outcome of mea-
suring u(p] - po) is j, where u(x) is the unit step function. Helstrom also

showed that the error probability of this receiver obeys

Pr(e) = 271 - [1 - J<vqlep 212, (11.12)

for the pure state problem oy = |wj><wj[. Kennedy [19] and Dolinar [20] later
deduced realizations for exponentially optimum and exactly optimum receivers,
respectively, when the \vj> are coherent states, using conditional Poisson
process photodetection models. Shapiro [21], using the representation theorem
from [15], was able to explicitly develop the operator description of the near-

optimum receiver. In this program we have extended the work of Kennedy, Dolinar,

and Shapiro to the detection of binary two-photon coherent state signals.

..................................
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In comparison with coherent state signals TCS offer significant communi-
cation performance advantages, e.g., (II.12) reduces to
;.
270 - 0 - exp(-an) 1V,

for coherent state le>

Pr(e) =< (I1.13)

270 - 0 - exp(-an (N 1)) 1VE

k. for optimized TCS |vj> ,

of average energy content NS photons. We have developed a general explicit
realization for the u(p1 - po) measurement for TCS signals [10]. OQur construc-
tion of the optimum TCS measurement combines the operator transformation prop-
erties of the idealized four-wave mixer in [13] first with the near-optimum
operator analysis in [21] and later with a guantum version of the Dolinar

work [20].

Phase-Sensing Interferometry

The performance of phase-sensing interferometers employin: TCS and homo-
dyne detection were analyzed [11], [12] and compared to the performance of
systems employing direct detection [22]. Standard differenced direct-detection
Michelson and Mach-Zehnder interferometers were shown to be sub-optimal in the
sense that an observation/measurement-noise coupling occurs, which can degrade
performance. Homodyne-detection interferometers in which the phase shift in
one arm is the conjugate of that in the other arm do not suffer from the pre-
ceding drawback. Overall, however, the performance of differenced direct-
detection and homodyne-detection interferometers is similar in single-frequency
operation. In particular, both detection schemes reach the standard gquantum

limit on position measurement sensitivity in single-frequency interferometric

gravity-wave detectors at roughly the same average photon number. This Timit

]
Sbnd g L2
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arises from back action in the form of radiation pressure fluctuations entering
through the energy-phase uncertainty principle. Multi-frequency devices can
circumvent this uncertainty principle, as was illustrated by the conceptual
design we have given for a two-frequency interferometer which can greatly surpass
the standard quantum 1imit on position sensing. This interferometer relies on
the heterodyne results developed in [9], and complements recent work of Yuen [23]

on the validity of the position-sensing SQL.
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APPENDIX I
SQUEEZED STATE GENERATION VIA FORWARD DEGENERATE FOUR WAVE MIXING

Prem Kumar and Jeffrey H. Shapiro

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

Degenerate four wave mixing (DFWM) has been suggested as a possible
generation scheme for squeezed state light, A recent analysis of the
quantum effects of probe-conjugate loss in backward DFWM has shown that
such loss puts an absolute 1imit on the squeezing that can be obtained
via this generation scheme, In this communication we show that it is
the counter-propagating beam geometry of backward DFWM that makes it
i11 suited for squeezed state generation. On the other hand, the nomi-
nally copropagating beam geometry of forward DFWM is shown to alleviate

the absolute probe-conjugate loss limit on sgueezing,

PACS Headings: 42.50. + q, 42.65. - k, 05.30. -d
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I. Introduction

Degenerate four wave mixing (DFWM) has been éuggested by Yuen and Shapiro as

a possible source for squeezed state generation]. Their model was a simple exten-

sion of the classical description of DFWM given by Yariv and Pepperz. Quantizing
only the probe and the signal beams while retaining classical descriptions for
the pump beams and the nonlinear medium, they showed that a two-photon coherent
state (TCS) (essentially a minimum uncertainty squeezed state) is obtained by a
50/50 combination of the phase conjugate reflected beam and the transmitted probe
beam from backward DFWM. A recent analysis by Bondurant, Maeda, Kumar and
Shapiro has shown that probe-conjugate loss puts an absolute limit on the squeez-

ing that can be obtained via backward DFWM3. Since then Reid and Walls have

given a fully quantum mechanical treatment of backward DFWM4. Their analysis
neglected the spatial propagation effects and showed that pump induced spontane-
, ous emission limits the amount of squeezing achievable, In this communication
we show that the absolute limit on probe-conjugate loss is because the preceding
work all addressed backward DFWM, which has a counter-propagating beam geometry.
This geometry is ideal for correcting phase aberrations via conjugate-wave genera-
tion, but is ill-suited for squeezed state generation because of the afore-mentioned
probe-conjugate loss limit. We show that forward OFWM, which has a nominally
copropagating nonplanar beam geometry, removes the absolute probe-conjugate loss
1imit. Such an interaction geometry has been applied recently in studies of pres-
sure induced four wave mixing interactionss.
In section II we start with a classical analysis of forward DFWM, It is
well known that large nonlinearities are obtained when the operating frequency
is chosen near an atomic or molecular resonance. Therefore, in section III, we

develop a semi-classical treatment of forward DFWM in an atomic medium con-

sisting of an ensemble of stationary two-level atoms. [n section [V we quantize




the electromagnetic fields and examine the squeezing behavior of the output

beams.

II. Classical Equations

Consider the geometry shown in fig. 1. Two weak waves of wavevectors
E& and fé propagate at small angles + ¢/2 from the z direction, determining
a plane P. The pump waves of wavevectors Es and E@ also nominally propagate
along the z direction; Fé and Eh are obtained from F& and Fé by rotating
the plane P along the CC' axis. With this choice of wavevectors we note that
F& + Fé = Fs + iﬁ, i.e., the phase matching condition is satisfied.

The fields are taken to be co-po'larized6 plane waves of angular freguency

E4(F.t) =‘% As(ry)expli(ut-ky-F)] + c.c. (1)

2

where rj denotes the distance measured along ?5. Following Yariv and Pepper

we can derive the following equations for coupled modes 1 and 2

*

b=

—— =-'iv<*A * 2

F 2 @ A

. (2)
where < is the nonlinear coupling constant given by (mks units)

x = wx(3) AsR4/2¢n cos %, (3)

(3)

X is the third order susceptibility of the nonlinear medium, ¢ is the

speed of light in vacuum and n_ is the background refractive index. Equation

0
(2) has the following solution
<

*

cosh(f«<|z) A,(0) - 1 TET' sinh(i<|z) A, (0), (4a)

=3
-
—
N
~——
[}

>
~nN
—
~N
~
"

cosh({{<|z) A,(0) + i - sinh(ie]z) Ay(0), (4b)

| t

in terms of boundary conditions at z = Q.
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III. Collisioniess Two Level Medium

We now consider an ensemble of stationary two level atoms forming the
nonlinear medium. The atoms are characterized by a dipole moment, u, and
longitudinal and transverse relaxation times T] and T2 respectively. Follow-

ing Abrams and Lind7 we obtain the following equations for the coupled modes

1 and 2
dA dA,”
ol L PR A B e
where
y = 2y, (1« 62% 1 7T (6)
T ¢  cos(¢/2
“o <1+52+ A1+ 18,41%
4 2
A .
and
e Bo o (st 4) s Y :
Ty, 2AIZ+A22 A 2cos(s/2) '
0 fasls |Pa 4 s cos(e/
A S

3 = (w‘wo)TZ is the normalized detuning from line center, A52 = ﬁZ/T1T2u2 is

proportional to the line-center saturation intensity, g is the atomic transition

frequency, 3 = uZANO TZWO/ZeOcﬁ is the line-center small-signal-field

attenuation coefficient, ANO = (N]—N is the equilibrium population difference

2) o
in the absence of the applied fields, n is the saturated refractive index _;;*1

P

given by

e e




-y g Ty n p———— v w—r - r—p———t— — —

K2 = 9;
c

)
S
€

(n?2. 2a,c 5(1+5%) 22

) =
o] 2 2\ ¢ = ’
“o ’|+52 + lA3f + IA4( . c?
A 2

S

(8)

and k is the magnitude of the propagation vectors in the medium. We note that
the pumps are nominally copropagating, so that no spr_tial averaging along the
pump direction is required. Such averaging drastically reduces the DFWM
reflectivity in the conventional counter-propagating pumps geometry7.

Equation (5) yields the following solution,

*

A(z) = €% [cosh([«|z) Ay(0) - i IKI sinh(|e|2) Ay(0)] (9a)

K

Az*(z) = e Y2 [j TET sinh([x|z) Ay(0) + cosh(|«|2) A;(O)], (9b)

. in terms of boundary conditions at z = 0. -
IV. Squeezed Stave Generation
A. Lossless Case

i In giving a quantum treatment of backward DFWM, Yuen and Shapiro1

replace I
the complex field amplitudes Aj and A; with the photon annihilation and ‘
creation operators aj and ag , respectively, for j = 1,2. They assume that
the pump fields A3 and A4 are strong and hence can be treated classically.
They also describe the medium by a classical third order susceptibility.

Using their approach for our forward DFWM geometry we replace Eq. (2) with

d_z_=‘1‘K azs —_=i(a1 (10)
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which has the following solution for a z=0 to z=L interaction

a;(L) = wa (0) - ivaj(0) (112)

ag(L) = uaj(0) + iv*a,.(o). (11b)

Here u = cosh(|k|L), v = e”esinh(lzlL), K = lxle1@, 31(0) and az(O) are the
input field operators at z = 0. The outputs at z = L are combined through
a 50/50 beam splitter to generate two new modes described by annihilation

operators c and d such that

(2]
1]

[a,(L) - fay(L)1/2'/2 (122)

a
L]

[ay(L) + ia,(L)1/2"2, (12b)

in terms of which the solutions become

+
€= MCn T VCp s d=ud, vdinf (13)
where c. = [a;(0) - ia,(0)1/2'/2 (14a)
dip = [27(0) + 1a,(0)]/2/2 (140)

are annihilation operators describing field modes obtained by linear combination

of the input modes to the four-wave mixer. Because lu[2-|v|2=1, it follows

that ¢ and d are in TCS if a](O) and a2(0) are in coherent states (CS).8
B. DFWM in a lossy medium

[t was shown in section IV A that modes ¢ and d are in TCS. Let ui
concentrite on the quadrature noise behavior of mode c. Let c] = c;c‘ and

¢, = E%%—- be the in-phase and out-of-phase quadratures of mode ¢, respectively.

Then from Eq. (13) one can show that the quadrature variances are

<Ac12> = )2> \U""i /4 {(15a)

"
A
—
(]
—
[}
A
n
—
v

<Lc22> = <(c2—<c2>)2> Lt S/4, (15b)
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when 31(0) and az(o) are in CSB. Thus arbitrarily large squeezing is obtained
in ¢y when |vl is made arbitrarily large with uv* real and positive. Large
values of |v| have been shown to be obtainable in resonant media, such as
described in section IIIg. An inspection of Eqs. (6), (7) together with the

defining equations for u and v shows that a large value of |v| is necessarily

accompanied by a large value of y, the loss per unit length in the medium.

We follow the approach of Bondurant et a1.3 to analyze the effect of this

probe-conjugate l1oss on the squeezing obtainable via forward DFWM in a resonant

medium.

We note that Eq. (10) can be obtained from the effective interaction

Hamiltonian

* o+ o+
Hy = 6v(<a]a2 *k a5a,) (16)

using the Heisenberg equations of motion and then converting the temporal

differential equations into spatial differential equations by the change of

variable z = vt.

In order to account for probe-conjugate loss quantum mechanically we adjoin

the system of Eq. (16) to two reservoirs of loss osci]]ators10

described by
annihilation operators bi, for £ =1 to = and s = 1,2. The total effective

interaction Hamiltonian can therefore be written as

* +
H;. = ﬁv[<a1a2 *xoa, 2 ]
+ A % [a ; ST o al ; <, b>7, an
e S R
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where <p represents the coupling between the modes of interest, i.e., a, and
s, and the loss oscillator modes. From Eq. (17), we obtain two coupled

spatial differential equations for the slowly-varying operators 3, and a,

da
1 . * :
oz - - vey - ik a2+ + G1(z) (18a)
da; + . +
o -1, + ieay + Gz(z) (18b)
r; where y is the lcss per unit length and Gs(z), s = 1,2 are Langevin noise
operators obeying
: - ‘2 2 Z [} : ] [ -
va_{z) = vz |x,|° [ a_(z)expli(w,~w)(2'-2)/v] dz', s=1,2, (19a)
8
and
6,(z) = - ¢ ; <pbp (0)expli(u=up)z/v]; s=1,2 (19b)

respectively. These noise operators, under the Wigner-Weisskopf approximation,

obey the commutation rule

[Gs(z), G;ﬁ(z')] = 2y 6ss.d(z-z') for s, s =1,2. (20)

The set of equations (18) can be integrated with the result

a (L) = e uay(0) - iva,"(0)] + 1y (21a)
2, (L) = e iva (0) +  wa,T(0)] + 1, (21b)
where

L 'Y(L'Z') . =10, ) + ' '

Iy = é e [cosh(}([(L-z?)G1(z')-1e sinh(|«](L-2 ))GZ (z')]dz (22a)
L . . .

T, = J e"’(l"Z )[-ie'1esinh(|<](L-z‘»G1'(z') + cosh(lzi(L-z'))Gz(z')]dz'. (22b)
0

The loss per unit length, v, appearing in Eq. (19a) is numerically the same

as that in Eq. (6) for a medium consisting of stationary two level atoms.




Operator equation (21) reduces to the classical equation (5) when expectation

values are taken.

To calculate the effect of probe-conjugate loss on squeezing, we construct

new modes as in Eq. (12) and evaluate the quadrature variances. As an example,

/2

¢ = e M uey, - velp ]+ (g - irp)r2! (23)

and
2 -2vL

<agy™> = ':' (u-v)z +JZ-< (I‘]]+I‘22)2> H (24)

where T4 = (r]+r]+)/2, Ty = (rz-r2+)/21§nd we have chosen pump phases such
that © = 0. After substituting Eqs. (22a) and (22b) into Eq. (24) and

evaluating the appropriate moments, we get

2. _ I%ZNH‘ 1 -2(y+|c|)L IN+1
<AC] > = Y 'Y+ < + -4—e Y ll(‘ [1— Y+ ” ] (25&)
and
2, . X_E_ZN” T ~Ay-Ix|)Lp_ y(2N1
<acy"> T * g€ 1 v 1, (25b)

where N measures the initial excitation of the reservoir modes, i.e.,
N = <bZ‘+(0) bZ (0)>, and is assumed to be the same for all the modes.

Several cases of interest can now be considered.

i) y=0, i.e., the zero probe-conjugate loss limit, in which Eq. (25) reduces to
€g. (15) and ideal squeezing is obtained.

ii) y#0,v<{x] and L >> H—I—[?H—- In this limit <Ac22> + = and <Ac]2> -

Z§$E+lij , i.e., for a given N ideal squeezing can be obtained by making |«| >> v,

Though it should be noted that pump induced spontaneous emission noise will limit

this squeezing as is the case in backward DFWM as shown in Ref. 4.

2 . 2N+1

. ] . . 2
i1i) y>|{x! and L >> IC3rE In this limit <acy > ay+Te] and ac,”> -

X EYTl For N=Q, i.e., when the loss oscillators are initially unexcited,

Y

2. . 2 . L1
we get ¢y = m ~1/4 and <8¢,y > Iy 3 for v>>|«l.
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This result is expected here because loss totally dominates the nonlinear

coupling and any quadrature noise asymmetry caused by the latter is swamped

by the fluctuations introduced by the former. In the case of y=(x|, a squeezing

. 2
factor of 2 is st111 obtained in <Ac]2 . The uncertainty product <AC12><AC2 > =

(2N+1) /16(1- l—%—)> T3 implying that a squeezed state which is not a minimum

*
uncertainty state is generated. Also, since for our choice of o, uwv is real, -

. N
this state is not a TCS either.

V. Discussion
The results of the previous section show that the DFWM beam geometry
plays an important role in determining the squeezing that can be obtained in

a realistic experiment. The nonlinear coupling introduces quantum noise

asymmetry between the quadratures of the 1nteract1ng modes. In DFWM this f

asynmetry is between the quadratures of two d1fferent modes and mode m1x1no at

the output of the DFwM 1nteract1on 1s required to. obta1n new modes, whose two

cem e -— P At ey -

quadratures show this asymmetry Probe-conaugate loss, on the other hand, intro-

duces independent fluctuations into the two quadratures which are coupled via the
non-linear interaction, thus tending to equalize the observed output beam quadra- :
ture fluctuations. The latter is the result of case (iii) in section IV, where -

loss dominates the nonlinear coupling.

In the counterpropagating geometry of backward DFWM, the interaction
at any point couples forward and backward going waves. Because of loss,
each of these waves has suffered the noise-symmetrizing effect noted above.
It is the combination of the loss with the non-local nature (forward/backward
wave coupling at all points in the interaction medium) that is responsible,
we believe, for the severe loss-1imit on backward DFWM squeezed-state
generation. On the other hand, in forward DFWM only forward going waves

are coupled. Although loss injects a symmetric noise contribution at each

point in the interaction medium, the nonlinear interaction from that point
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to tﬂe end of the interaction squeezes that noise contribution. Thus, with
the forward interaction and gain coefficient in excess of the loss coefficient,
the only fundamental 1imit on achievable forward DFWM squeezing will be due to
pump induced spontaneous emission. Indeed, our view of the physics of this
problem is supported by Yuen's loss analysis for DPA squeezed state genera-

tion8

» which shows that in that forward-going three-wave interaction arbitrary
squeezing is obtained for any y and N so long as |x| can be made arbitrarily
larger than vy.

In summary, forward DFWM appears more promising than backward DFWM as a
squeezed state generator, It is a phase-matched interaction with no funda-
mental Timit on squeezing due to probe-conjugate loss, Moreover, we expect
there will be differences in the Timits on obtainable squeezing set by pump-
induced spontaneous emission in forward and backward DFWM, because of the
different physics of their spatial propagation characteristics, as described N
above. Furthermore, since all the beams are propagating in roughly the same
direction, the interaction is not velocity selective. The participation of
all velocity groups results in a very large nonlinear interaction, Both
experimental and theoretical investigations of forward DFWM have recently

been published.'?

Phase conjugation and sub-Doppler resolution due to strong
saturation have been reported,

The authors acknowledge helpful discussions with R,S, Bondurant and

D.F, Walls, This work was supported by the Office of Naval Research Contract
N0O0014-81-K-0662.
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APPENDIX II

QUANTUM NOISE AND EXCESS NOISE IN OPTICAL
HOMODYNE AND HETERODYNE RECEIVERS

Jeffrey H, Shapiro

Department of Electrical Engineering and Computer Science
and Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

A parallel development of the semiclassical and quantum statistics of
multi-spatiotemporal mode direct, homodyne, and heterodyne detection using an
ideal (except for its sub-unity quantum efficiency) photon detector is presented.
Particular emphasis is placed on the latter two coherent detection configurations.
The primary intent is to delineate the semiclassical theory's regime of validity
and to show, within this regime of validity, how the quantum theory's signal
gquantum noise, local oscillator quantum noise, the quantum noise incurred
because of sub-unity detector quantuﬁ efficiency, plus (for heterodyning only)
image band quantum noise produce the guantitative eguivalent of the semiclassical
theory's Tocal oscillator shot noise. The effects of classical fluctuations
on the local oscillator, and the recently suggested dual-detector arrangement
for suppressing these fluctuations, are treated. It is shown that previous
studies of this arrangement have neglected a potentially significant noise

contribution.
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I. [INTRODUCTION
In coherent optical detection [1] - [3], the optical field to be measured

is combined on the surface of a photodetector with the field of a strong

lccal oscillator laser whose center frequency is offset by an amount Av from

that of the signal field. The detection scheme is referred to as optical

homodyning if av=0, and optical heterodyning if av ’“IF’O’ with VIE being the

intermediate frequency in the latter case. For both schemes, electrical

filtering of the photocurrent is used to select the beat frequency components

‘ in the vicinity of aAv, yielding an output that contains a frequency translated
replica of the signal field components that were coherent in space and time
with the local oscillator field. Heterodyne detection is now widely employed

) in coherent CO2 laser radars [4], (5], and is being vigorously researched for use
with semiconductor injection lasers in fiber optics [6] ~ [8] and space
communications [9], [10]. Performance analyses in these areas routinely employ

the semiclassical statistical model for photodetection, which implies that the

| 3]

fluctuations observed in coherent optical detection with signal and local
oscillator fields of perfect amplitude and frequency stability comprise an additive

white Gaussian noise, representing local oscillator shaot noise.

-y

It has long been known [11] that the semiclassical statistics for photodetec-

tion are guantum mechanically correct only when the total field illuminating the

detector is in a Glauber coherent state or a classically random mixture of such

states. Inasmuch as ordinary light sources, including lasers and light emitting
diodes, obey this classical state condition, there is no need to abandon the ';?,}*
semiclassical approach in the vast majority of photodetection sensitivity ;ﬁflg
calculations. However, non-classical light has been generated via resonance

fluorescence, as confirmed by observations of its photon anti-bunching {12] and

sub-Poissonian behavior [13] in direct detection. Moreover, there is great
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theoretical interest in squeezed states (also called two-photon coherent states)
(14], [15], which are non-classical states of considerable potential for optical
communications [16] - [19] and precision measurements [20] - [23]. For these
states, the quantum theory of photodetection is essential, and coherent optical
detection scnhemes are the most interesting.

In (18], Yuen and Shapiro developed the quantum descriptions of single-
detector optical homodyne and heterodyne receivers. They employed a quasimono-
chromatic approximation, and assumed a coherent state local oscillator,
corresponding to perfect local oscillator amplitude and frequency stability.
Within these limitations, complete statistics for multi-spatiotemporal mode detection
are available from [18]. More recently [22], the fact that photodetectors respond
to photon flux rather than power [24] has been used to relax somewhat the
quasimonochromatic approximation in [18]. Thus, were high power, highly stable
local oscillator lasers available at all wavelengths of interest, the quantum
photodetection theory of [18] would provide a sufficiently general foundation for
all optical homodyne and heterodyne sensitivity calculations. Unfortunately,
such is not the case.

Oriven by heterodyne-detection problems arising from the excess noise of
semiconductor injection lasers, Yuen and Chan [25] proposed a dual-detector
arrangement for coherent optical detection, akin to the balanced mixer concept of
microwave technology [26], [27]. They gave a direct quantum analysis of single-
mode dual-detector homodyning, showing that Tocal oscillator guantum and excess
noises can be balanced out, hence alleviating injection laser problems that would
have plagued a single-detector system, In subsequent work by Chan and his
collaborators, the basic dual-detector excess noise cancellation concept was
demonstrated experimentally [28], and a variety of non-ideal device effects (quantum

efficiency mismatch, etc.) were analyzed using semiclassical multi-temporal mode

e e
PGS S WS

;:l"‘:‘ 'x' N




techniques [29]. Also, Schumaker [30] has shown that the dual-detector single-
mode homodyne arrangement is better than single-detector homodyning for making
non-classical squeezed state observations, as a result of its ability to cancel
out local oscillator excess noise.
Because the quantum treatments in [25] and [30] are confined to single-mode
situations, and the multi-mode results in [28], [29] are in essence semiclassical,
there is as yet no fully quantum treatment of multi-mode dual-detector coherent
optical reception. This paper will develop such a model by generalizing the
4 results of [18]. Simple explicit representations for all of the relevant output
terms in coherent optical detection with a strong but classically random local
oscillator field will be derived. [t will be seen that the previous dual-
detector analyses [25], [28] - [30] neglect excess-noise modulation of the signal
and quantum noise terms, and the first of these modulation effects may significantly
degrade output signal-to-noise ratio in some circumstances. Moreover, because

i of the calculational power afforded by [18], our rather general quantum results are
more directly comparable with those of the multi-mode semiclassical theory than
are the more limited results of [25], [30]. Indeed, that comparison is the

i primary purpose of this paper.

The paper's core, Section [I, is a parallel development of the semiclassical
and quantum statistics of multi-spatiotemporal mode direct, homodyne, and heterodyne
detection using an ideal (except for its sub-unity quantum efficiency) photon
detector. The formulation therein for the coherent optical detection schemes will
assume perfectly stable Jocal oscillators in the semiclassical models, and the
corresponding coherent state local oscillators in the quantum models. We use
Section II to delineate the semiclassical theory's regime of validity, and to show,
within this regime, how the combination of the quantum theory's signal quantum

noise, local oscillator quantum noise, the quantum noise incurred because of
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sub-unity detector quantum efficiency, plus (for heterodyning only) image band
quantum noise produce the quantitative equivalent of the semiclassical
theory's Tocal oscillator shot noise. In Section III we address ccherent
optical detection with classically random local oscillators. The technique of
jterated expectation is used to readily obtain both semiclassical and quantum
results for this case. Single-detector and dual-detector systems are considered,
and our results are compared, in the case of dual-detector quantum homodyning to
those of [25], (30]. Finally, in Section IV we briefly discuss the implications
of our wérk for squeezed state generation experiments, which is the application
that motivated our analysis.
[I. SEMICLASSICAL VS. QUANTUM PHOTODETECTION

The central element of all the photodetection configurations we will consider
is shown in Fig, 1. It is a surface photoemitter with active region
X = (X,y) ¢ Ad in the z=0 plane, illuminated by a quasimonochronomatic (center
frequency vo) paraxial scalar electromagnetic wave from the half space z<0 over
an observation time interval t ¢ T. This detector is assumed to have a constant
quantum efficiency n ver the frequency band containing the illuminating
field. The output of the detector is a scalar current density J(x,t) for
X < Ad’ t ¢ T. As will be described below, the field characterization we
must employ for the illumination is either classical or gquantum mechanical, according
to whether semiclassical or gquantum photodetection statistics are sought. Although
we shall neglect internal time constant and noise effects, which are present in
real detectors, our direct detection results will be applicable to photomultipliier
tubes (for which the current gain permits internal noise to be overcome) at
post-detection bandwidths up to the reciprocal anode response time of the tube.
Furthermore, our results will be applicable to coherent optical detection systems
using semiconductor photodiodes (for which the mixing gain overcomes the internal

noise) up to the post-detection bandwidth of the detector. No particular loss of
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generality is entailed by the use of scalar rather than vector fields, with
the caveat that all the coherent optical detection work herein presumes that
the actual signal and local oscillator fields are co-polarized. Finally, by
appropriate spatial integrations, we can collapse our current density observation
to photocurrent observations for a single detector or a multiple-detector
array.
A. Direct Detection
In direct detection, the electromagnetic field to be measured comprises the
entire illumination, and the basic observation quantity is the current density J(X,t).

Semiclassical Model Let E(+)(§]t) be the positive-frequency complex

field (V/m units) associated with the classical scalar electric field incident
on the detector, i.e., E(+)(Y}t) is the analytic signal of this electric field.

Because of our quasimonochromatic assumption, the Fourier transform ! of E(+)

E(+)(-X-,v) = Jdt E("')(;’t) eJZ'ﬂ‘vt ) . -
is non-zero only for {v - vol < B, where the bandwidth B is much less than the
center frequency Vg Because of our paraxial assumption, the short time average

power density falling on the point x at time t is :

1%t = (g2 e e (x,e), (2)

shere c is the speed of light, = the permittivity of free space, and E(') E(E(+))*
is the negative-frequency complex field, with * denoting complex conjugate.
The standard semiclassical photodetection model [31], in our notation,
presumes that J(x,t) is a conditional space-time Poisson impulse train with
rate function u(x,t) = RI(X,t)/e where e is the electron charge, and 2
is the detector's responsivity (A/W units) at the illumination's center

»

fraquency . . This means that:




1) the current density, which is of the form

J(x,t) = Jes(x-xp)s(t-t ), (3)
n

" has shot effect noise, i.e., it consists of instantaneous
emissions of an electron charge e at the random space-time
points {(xn.tn) P XpeAys toeTh
2) conditioned on knowledge of the rate function {u(X,t) : IkAd,teT},

the number of photoemissions occurring within a spatial region

A‘g; A during a time interval T' g;_T is a Poisson random variable

with mean value dx ' dt u(Xx,t);

Py,
TN

3) conditioned on knowledge of {u(X,t) : EhAd , teT}, the photoemissions
occurring in disjoint spaial regions A', A“(::Ad are statistically
independent processes,

4) conditioned on knowledge of {u(X,t): ?&Ad,tsr}, the photoemissions
occurring in disjoint time intervals T',T"CT are statistically

independent processes.

Even though the semiclassical theory of photodetection employs classical
fields, it is customary to recognize in this theory that light of frequency v
is quantized into photons of energy hv , where h is Planck's constant. Thus,
for the quasimonochromatic case at hand, the responsivity is ordinarily written

as R = en/hvo, in terms of the detector's quantum efficiency n and the

"

photon energy at the field's center frequency, so that u(X,t) nI(?}t)/huo.
In fact, because we are concerned with detectors that, quantum mechanically,
respond to photon-flux density rather than power density [241, [22], it is more

proper to write

u(Y,t) = F‘Iph(;'t)’ (4)

..........................
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where Iph is the classical phaoton-flux density

e

Ln(%et) = E (GUERL) (5)

Ty
'

obtained from the (photons/s)I/Z/m units positive-frequency complex field ,'j
E(X,t) = J avice/2m) 172 &) (x,0)e T2t (6)

For all practical purposes in the semiclassical theory, with quasimonochromatic
light we can use u(x,t) = nI(?}t)/hvo and  u(X,t) = nIph(Y,t) inter-
changeably. This amounts to using v = Vo in the square-root term of (6),

an approximation whose validity is quaranteed by (1). In the quantum theory,
even with quasimonochromatic light, it is critical to employ the photon-flux
density formulation, see [22].

Quantum Model In the quantum photodetection theory, the classical positive-
frequency complex field E(+)(Y,t) is replaced by a positive-frequency field -
operator - é(+)(?,t), whose quantum state is specified by a density operator o.

The quasimonochromatic and paraxial conditions of the semiclassical theory T

become conditions on the density operator, namely, that the excited (non-vacuum

state) modes of é(+)(§,t) lie at frequencies within B of Vg and propagate L
at small angles to the z axis. As in [17], [18], [227, we shall regard the ;:'ii
current density J(X,t) as a classical quantity, corresponding to the macroscopic '
output2 of the gquantum measurement performed by the detector of Fig. 1 on

the field é(+)(Y,t). To provide an explicit representation of this'quantum

measurement, we must first develop the guantum effective photon-flux density.

Let us convert E(+)(;,t) to a photon-units field operator by defining

et et At e e A s et A B RPN P DL A P I T PN PO R O
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(cf. Egs. (1), (6) )

Hg.) . jdt e(*)(x,¢) eIVt | (7)

and

ER) = [ dv (cef2m) V2 )3, e d2m0t o

Equation (8) defines the same basic field operator used in [16] - [18], [22].

We can made a modal expansion

E(6,t) = Eanen(;’t)’ XeA g, teT (9)
of this operator, where (in} are modal annihilation operators satisfying the
commutation rules
Bkl =6 i =0 , (10)
n’"m i n’"m nm’
and {en} are a complete orthonormal set of classical functions over

XeAy, teT. In Eq. (10), the [En+} are the adjoints of the (a }; they

are modal creation operators.

For a detector of sub-unity quantum efficiency we must adjoin to (9) a fictitious

field

Ejac®ot) = T cg (Xit),  eAy, teT, (11)
n

where (En} are modal annihilation operators that commute with {;n}

-

and {an+}. viz.

.............................................
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The fields E and Evac are quantum-mechanically independent, with the latter

6I’"I'l.

having all its modes in the vacuum state. In terms of E and E

VaC,
the effective photon-flux density operator for the detector is
- *|+_ - —
C{x,t) = BN (x,t)E'(x,t) , (13)
ph
with
Bxe) o= oG ¢ -V R (14)

The representation theorem of quantum photodetection [18, theorem 1] can
now be stated (in our notation) as follows. The classical current density

J(X,t) obtained from photoemissive detection measures the quantum operator

J(x,t) = eIph(x,t) , (15)
j.e., it is proportional to the effective photon-flux density. In somewhat
more detail this means (cf. the semiclassical case):

1) the current density obeys

JEt) = e s(x K )s(t-t) (16)
n

so it is still a collection of instantaneous emissions of an electron

charge at random space-time points {(;ﬁ'tn)} ;

—-—— e
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2) if F(J(x,t)) is an arbitrary functional of the current density, then
the classical average of this random variable <F(J(X,t))> equals

the quantum average tr(p'F(:J(?.t))), where tr denotes trace and

p' =o®p vac gives the joint density operator for E and Evac in

terms of the density operator o for E and the vacuum-state

-

= ® |0><0| density operator for E
n

Pvac vac .

Note that we cannot dispense with the vacuum state field évac unless n=1,

even though its average value obeys t:r(pva a E_(X,t) =0 regardless of the

vac
value of n . This is because the zero-point fluctuations (vacuum-state quantum
noise) in Evac can contribute to F(J(X,t)). Indeed the noise in J(X,t) has
nothing to do with the snot effect associated with the discreteness of the
electron charge. Rather, it is the quantum noise in E being observed through

measurement of the effective photon-flux density.

Comparison Let us suppose that the density operator for E is a classical state3,

s A IS

o = J{dZC_s P(o_t"g*) l°_t><‘§i (17)
with

hle = o le> i

defining the multi-mode Glauber ccherent states of the field E in terms of

the modal expansion (9), and P(a;a*) being a classical probability density
& ks

function P(asa )>0, sza P(a;a*) = 1, It was shown in [18] that this is a

necessary and sufficient condition for the semiclassical statistics to be

......
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quantitatively correct. In particular, under this condition the quantum model
predicts that J(x,t) is a conditional space-time Poisson impulse train with

conditional rate function
- o oo
u(x,t) = nE (x,t)E(x,t) : (19)

for

E(X,t) = [ a6 (X,t) = <afE(X,t) 0> . (20)
L - -

the average field illuminating the detector given the state of £ is the multi-mode

coherent state |a > .

To illustrate the above behavior, let us examine the statistics of the

observed photon count4

PR I dx I dt J(X.t) (21)
A, T

assuming single-mode illumination, and n = 1. In the semiclassical theory we

shall take
E(X.t) = [o/(A)/20e 3%, Y, fea oteT , (22)
where o 1is a complex-valued random variable with probability density function

pla), Ad is the area of Ad, and T is the duration of T. We then obtain
Mandel's rule [32] for the probability distribution of N

BrEN = n] = jdza p(a) («|?Vn!) exp (-la]d) , (23)




viz. N is a conditionally Poisson random variable, Equation (23) gives

the mean and variance of the observed nhotocount to be

N> = jd"'a pla) ol = <l (24)
and

var(N) = <N> + var (Ialz), (25)

respectively, where the first term on the right in (25) represents shot
noise and the second term on the right in (25) represents excess noise.
In the quantum theory we let E1(§)t) = (AdT)'Vze'Jz“ot be the anly

excited mode in (9), so that the density operator for E is
= ® ~ . N
0 =0y O |0><0]| (26)

for 04 the density operator of mode 1. We then find for the probability
distribution of N [11], [17]

PriN = n] = <nfo,|n>, (27)
where
;1+;1[n> = nin> (28)

defines the photon number states of the first mode of E. If o4 is the

classical state.

o = jdza pla) la><al . (29)

with p(a) being the probability density from the semiclassical theory

T ————
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(ef. €q. (17)), then (27) reduces to (23) as expected. Thus, in this case the
semiclassical theory is guantitatively correct in its prediction of the photon
counting probability distribution. It is nevertheless physically incorrect, in
that it ascribes the photon counting fluctuations to shot noise, whereas they are
actually a manifestation of the illumination field's quantum noise., For

example, were o, = [k><k| where |k> is the k-photon number state (a
non-classical state), then we would get

PriN=n] = 3 (30)

from (27), whence

<N> =k, (31)
and

var(N) = 0, (32)

for the photon count mean and variance. Here the field state is an eigenket of
our observation operator, so there is no uncertainty in the measurement
outcome. This sub-Poissonian behavior cannot be obtained from the semiclassical
thaory, because for all p(a) the excess noise term in (25) will be non-negative,
forcing wvar(N)> <N> to prevail.
8. Homodyne QOetection

The configuration w« shall consider for single-detector multi-spatiotemporal
mode homodyne detection is shown in Fig. 2. The signal field to be detected is

combined, through a lossless beam splitter of intensity transmission =, with a

perfectly stable local oscillator field on the surface of the Fig. 1 photodetector.

The resulting current density, J (x,t), is our homodyne detection output,

hom

whose statistics we shall characterize below. By spatial integration of our results

over the detector's active region 4 we can use our model to describe single-

di
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detector homodyning; the extension to dual-detector homodyning will be made in
Section III.

Semiclassical Model The total classical photon-units complex field incident on the
5

photodetector is given by
ERe) = e+ (1-0) V(R (33)

for IEAd » teT, 1in terms of a (potentially random) weak signal field

Es(iﬂt), and a deterministic strong local oscillator field ELO(Y,t). The
latter has a classical photon-flux density
I - W o -
phLO(x’t) ELO (X,t)ELO(X.t) ’ (34)

that greatly exceeds that of the former
-— * -
IphS(x't) = ES (X,t)ES(X,t) ’ (35)

for IEAd,tsT . Thus, the rate function driving the photodetector is, from

(8), (5), (33)-(35), approximately

u(Tot) = al(1-) Ly (K1) +2Le(1-0) ] 2Re(Eg (R, 0 (X, t))] . (36)

It then follows, from the Central Limit Threorem for high density shot noise [33],

(34], that at very large values of the local oscillator classical photon number

\

d;jdtl

pht0
d T

A

the homodyne detection current density Jhom(Y,t) is a conditional Gaussian

process. Specifically, conditioned on knowledge of the signal field




T

[s

(ES(I,t) : iéAd, teT} , J,. . (X,t) is the sum of three current densities:

hom

1) a homodyne-mixing current density signal term 2en[e(1-e)]1/2

2) a direct-detaction Tocal oscillator bias current density en(T-e)IphLo(i}t) H
and

3) a Tlocal oscillator shot noise current density, which is a zero~mean
spatiotemporal non-stationary white Gaussian noise process Jshot(;’t) with

covariance function

Venot (%1281 gpot (X0 t2)>

€)1 o (5 oty )6(E, ot -t,) . (38)

In order to connect the preceding multi-spatiotemporal mode formulation with
more familiar single-detector multi-temporal mode results, let us consider the
statistics of the single-detector homodyne photocurrent

;

ihom(t) = }A dx Jhom(§}t) . (39)
d

assuming that
- - 1/2 _<j2=u_t
ELO(x,t) = (PLO/hvoAd) e 0 . (40)

corresponding to a normally-incident plane wave local oscillator of power PLO'
Here we find that, conditioned on knowledge of the signal field, 1i,__ (t)

comprises a signal current

~

t) = Zen[PLOe(l-s)/hvoAd]1/2Re(j

6x Eg(%,t)ed 27ty (a1)
d

isig( A

Re(EG(X, t)E 4 (K, t)):

R 4
gt o e A d o
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plus a zero-frequency bias current

1bias

en(]-e)PLO/hvo . (42)

plus a zero-mean stationary white Gaussian process shot-noise current

| Tonot(t) with spectral density ei

2
bias (A/Hz)

The signal current is a frequency-translated (to baseband) replica of the

normally-incident plane wave component of ES(Y}t) that is in phase with the

Tocal oscillator field. The bias current is the zero-frequency photocurrent

produced by the local oscillator field. The noise current is the local-oscillator

shot noise, whose spectrum follows the well known Schottky formula [35].

) Quantum Model In the quantum model, Eq. (33) becomes an operator-valued expression
BTt = e ¢ (1) B (R, (43)
i giving the field operator é that drives the detector in terms of the signal
: field operator éS and the local oscillator field operator ELO . The density
operator o for E is assumed to be
: - 4
- °2*05 ® o (44)
where o is an arbitrary signal field density operator and = = 'y de<q |
S L o -
> is a multi-mode coherent state local oscillator density operator. The latter
o corresponds to a mean local oscillator field
.A E — - - — E‘ —
» LolX-8) = <318 glxst) i > L 3on 001D (45)
- when éLO is expanded using the mode set 3,7 as was done for E in £q. (9).
»
,A




The strong local oscillator condition of the quantum theory,

tr(pgEs (R 0EG(T, 1)) << [E4(Tot) 12, (46)

is assumed to prevail (cf. Egs. (34), (35)), with a very large average local

oscillator photon number

‘ N = J dx j dt|EL0(§,t)12>> 1, (47)
R Ad T
(cf. Eq. (37)).
To obtain the effective photon-flux density operator measured by the detector
) we adjoin to é from (43) a quantum-mechanically independent vacuum-state

field operator Evac ,see Egs. (11) - (14). We can now give a fully gquantum

characterization of the classical homodyne current density Jhom(Y.t) by

i translating the results of [18, theorem 2] into our notation. The strong local
oscillator condition implies that this classical current density measures the
quantum operator

. P - _ it o= e = 1/2 /2% ,— -

i JpomtXst) = en(1-e)E (X, t)E 4(x,t) + 2e[n(1-e)1"""Re ([(ne) ""Es(x,t)

1/2z - L s 4
* (1-n) 77E L (%51)] Ep (X:8) 3, (48)

) Moreover, because NLO>>1, the local oscillator direct detection term 1in (48),
en(I-s)éLa(Y,t)éLo(iﬂt) , yields classical observation values comprising a bias
current density en(1-e)|EL0(Y,t)|2 plus a local oscillator quantum noise current

) density, which is a zero-mean spatiotemporal non-stationary white Gaussian noise
process JLOq(;’t) with covariance function

L gq{ X1 2ty )9 gq(*20 850>
)
: 2. - V2= = .
[8?‘(1-2)] ELO(X1’t7} ~<x"-’(2/A ~~-<: 19
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Furthermore, under this same conditions. the second term on the right in (48)

-~ * _
simplifies to a homodyne-mixing signal operator 2en[a(1-e)]1/2Re(Es(x,t)EL0(x,t))
plus a sub-unity quantum efficiency (n<1) quantum-noise current density. The latter
current density is a zero-mean spatiotemporal non-stationary white Gaussian

noise process Jvac(i]t) with covariance function

<J (X1 ,t.l)J

vac (XZ’t2)> =

vac
e2n(1-n)(1-e) [E, o (Xy oty ) 125(Xy-X,)6(tq-t,) (50)
Lo 172 12
J is statistically independent of JLOq‘ Thys, the classical homodyne current

vac
density Jhom(ilt) measures the operator

~

(%ot = en(l-e)[E(Fot) 2+ d g (Kot)

“hom q

+ zenfe(1-6)1"72 Re(Bg(TIE S(Tot)) + d,c(Kot). (51)

The first term on the right in (5T7) is the local oscillator bias current density,
the second term is the classical representation of the Tocal oscillator’'s quantum
noise contributed by the en(l-e)ELS ELO measurement, and the last term is the o
classical representation of the n<1 quantum noise contributed by the

2e[~(1-n)(1-g)]1/2Re(év (Y,t)ELS(;,t)) measurement. The signal field

ac
contribution to 3hom(;’t) cannot be simplified further without knowledge of
the density operator T In general, this term will contribute signal field
guantum noise to the homodyne observation, as will be seen below.

Comparison To facilitate comparison of the semiclassical and the quantum theories

of homodyning, we shall restrict our consideration to the single detector case.
First, we need the quantum characterization of the homodyne photocurrent (39),

which can be obtained by spatial integration of the results just presented. We

ey ', P

assume a normally-incident plane wave mean local oscillator field

PRI
« % e
PP W I




-

[\

~20-
_— . /2 -j2mv t
E o{Xst) (P g/hv Ay Ce o (52)
and we find the ihom(t) measures the operator
1.hom(t) N 1.bias ¥ 1-LOQ(t)
- - jz‘ﬂ\) t
. zen[pwe(1-e)/rwo/xd]‘/zme(LL T ) (1) (53)
d
Here, 1,... is given by (42), and iLOq and ivac are statistically

independent zero-mean stationary white Gaussian noise processes with spectral

densities en(1-g)1bias and 8(1'”)1bias ,respectively.
Physically, 1bias is the local oscillator bias current, 1L0q is the local
oscillator guantum-noise current, and i is the n<1 quantum-noise current.

vac
Equation (53) differs from the semiclassical description in two respects: the

homodyne-mixing signal term involves the quantum field operator ES rather

than the classical field ES ; the noise in the homodyne observation is a

combination of lacal oscillator guantum noise, n<1 quantum noise, and signal

quantum noise, rather than simply being local oscillator shot noise. We know, R
from the direct detection discussion, that the semiclassical photodetection model
is quantitatively correct if the density operator o for the field E i1Tuminating
the detector represents a classical state. This situation occurs, under (44),

if and only if og ,the signal field density operator, is a classical state -
.2

*
> 15Pslagiag ) lag><a] (54)

for ‘zs> the multi-mode signal field coherent state in modal expansion of

éS similar to Eq. (9), with PS being a classical probability density. When (54)

applies, the homodyne-mixing signal term in (53) can be given a classical

representation akin to that employed for the Evac mixing term in going from

PP UL VY S . e PRSI Ty T SPRS TPy P | A o s

PO S U Sy )




(48) to (51). In particular, for a classical signal field state, the quantum

r‘ theory of homodyning predicts that

1hom(t) * 'pias © 1'LOq(t) *

2en(P e (1-c)/mvp 1" PRe(| dReg(x,0)e 320y

Ad

(¢) +i . .(8) , (55)

k where
1

Eg(X,t) = <E‘siés(7'“”?s’ (56)

is the classical mean signal field when the state of és is !as> . and

isq(t) is a zero-mean stationary white Gaussian noise current of spectral

density enei that is statistically independent of iLOq and i

bias vac
The classical field ES is, in general, a random process with probability
density PS(?S;?S*) in modal expansion form. The current isq(t) is the
classical representation of the coherent state signal field quantum noise as

observed through the measurement operator (53). Note that
(¢) + i _ (t) (57)

is a zero-mean stationary white Gaussian noise process of spectral density

ef i »in quantitative agreement with the semiclassical 1shot(t) result,

0f course, the interpretation of the origin of the noise in homodyning is

different in these two theories. Local oscillator shot noise is a semiclassical
fiction; the noise seen in homodyne detection (with an ideal local oscillator)

is local oscillator quantum noise, plus <l quantum noise, plus signal gquantum

) s
oL .
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noise. Moreover, in the limit ne - 1 with n(]-e)NLO >> 1 ,the two former

contributions disappear, and homodyning gives a direct quantum measurement of
the signal field component that is coherent in space and in phase with the
local oscillator [18]. It is this characteristic that makes homodyning
attractive for squeezed state applications [16] - [19].
C. Heterodyne Detection

The configuration for single-detector muiti-spatiotemporal mode heterodyne
detection, shown in Fig, 3, mimics that empioyed for homodyne detection. The
only differences are that the signal field is centered at frequency Vo + VIF
the local oscillator is centered at frequency Yo ,and passband filtering of
the current density is used to select beat frequency components in the vicinity
of the IF frequency VIF (vIFT>>1 will be assumed). The bandwidth B of
the signal field will be taken to be much less than VIE ,and we shall concern
ourselves with characterizing the statistics of the current density

J X,t). The results we need are easily developed by injecting the frequency

het(

offset into the preceding homodyne work.

s
IF
Semiclassical Model In Eq. {33) let us make the frequency offset of the signal

field explicit by writing

'jZﬂ' (\)O+‘)IF)t

ES(I,t) = FS(?,t)e , (58)

where FS is a baseband complex signal field of bandwidth B . The reéu]ts
following (37) now provide the semiclassical statistics for heterodyning, namely,

conditioned on knowledge of the baseband signal field {F.(X,t)

S

xedAys teTi , Jp o (X,t) is the sum of three current densities:

1) a heterodyne-mixing current density signal term

o .
2en(= (1)1 2Re (F (X, 0)e 3% o™ 1R ) e "(%,0))
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2) a direct-detection local oscillator bias current density

en(l-¢)I

[ phl_O(Sz’,t) ; and

3) a local oscillator shot noise current density Jshot(;;t) characterized

n by (38).
"

The single~detector heterodyne photocurrent

aelt) = JA & e (Fot) (59)
% d
» assuming ELO is given by (40), then comprises a signal current
. _ 1/2 - = -j2mrvset
T57q(t)=2enlP_ge(1-e)/ My Aq] Re(JAdxFS(x,t)e ety (60)

plus a bias current i from (42), plus a zero-mean stationary white Gaussian

bias

process shgt-noise current i with spectral density ei

shot(t) bias’

The heterodyne current (59) is thus a frequency translated (from
vy TVIF to ”IF) version of the normally incident plane wave component of
ES plus the usual bias and shot noise terms, Because of the frequency offset
1E between the signal and the local oscillator fields, both the in-phase and
quadrature (relative to the local oscillator) components of the signal field
contribute to the output observations,
Quantum Moqel Here we suppose that the only non-vacuum state modes of the
field operator ES lie within a bandwidth B of the frequency vo+vIF'
However, because of zero-point fluctuations, the quantum version of (58) is

E(K,t) = Fo(X,)e 8 ™E)t v b (R)emdZ ot | (en)

where FS and ﬁI are baseband complex signal and image field operators,
Physically, the image band, being VIE Hz below the local oscillator’'s frequency,
contributes quantum noise to J, . even when it is unexcited risy1, 221,

de shall assume that %S and %I are guantum-mechanically independent, with

. S P - . R e L. LN et L L e T
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the latter having all its modes in the vacuum state7. We now find, from

the quantum homodyning work, that Jhet(i}t) measures the operator

I (Xot) = en(1-e) [E o(%,t) |2 * 3 g (F2t)

. 2en[e(1-e)]‘/ZRe(s?S(i‘.t)e‘jz"(“o*"’IF)tELO*(I,t))

+2enle(1-)1"2Re(F (X,)eI2 0™ IF B F(x,0)) ¢ u (Kot)  (62)

where ELO' JLOq , and Jvac are as given in (51)., We ran use the vacuum-state

nature of %I to obtain the classical representation

*

2en[s(1-g)]‘/ZRe(%I(I,t)e'jz"(“o‘“w)ts[_o (X,t))

= g (x.t)2% (63)

Iq

where JIq is a zero-mean non-stationary white Gaussian classical process

corresponding to the image-band quantum noise, with covariance function

(en)2e(1-2) [E 4(Xy o) 125(X,Kp)a(ty-ty) (64)

Thus, the quantum description of the single-detector heterodyne photocurrent

1het(t) from (59) is that it measures the operator
) = i i (1) o+ . (812 i (1)
het bias L0gq Iq vac
—A — _‘
o 2en(P c(1-c)/hv A1 %Re(] dRF(x,t)eITVIFY) (65)
La 0d N S
d
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where i

s iLOq ,and i __(t) are as in (53) and i, (t) is a zero

vac Iq
mean white Gaussian noise process (the classical representation of image-band

bias

quantum noise) of spectral height enelpioee

Comparison Suppose the density operator for %S is a classical state, i.e.,

its density operator OFS obeys
f 2 *
RN UA- LR (66)

where PF is a classical probability density, and |a.> is the multi-mode
S -

Glauber coherent state for the modal expansion

jZTr(VO+VIF)t

F(t) = ; aSnsn(x,t)e , (67)

1

with )} denoting summation over modes Zn lieing within bandwidth B8 of
n

frequency v *vrg- Here we can obtain a classical representation of the

F. term in (65) which reduces the guantum description of the heterodyne

S
phatocurrent to

) ) . . 172 .
1het(t) = Thias * 1L0q(t) * 1Iq(t)/2 * 1vac(t)
1/2 (- = -j2muget
+2en[P 1-¢)/hv A1/ “Re( |dx Fe(x,t)e IF™)
en(P ge(1-e)/v Ay > s
g2, (68)

. . . 2 . 1/2 | .
where the total noise current, T 0q + 1Iq/2 + 1Sq/2 t i o




is a zero-mean white Gaussian process with spectral density eibfas .

in quantitative agreement with the semiclassical theory, and

Fo(X,t) <ag|Fc(X,t) |ag> (69)

is the classical baseband signal field envelope ES associates with the

coherent state las> . Note that half of the ES quantum noise entering

i comes through the signal field operator F. and the other half

het
comes through the image field operator %I.S

S

IIT. EXCESS NOISE EFFECTS AND DUAL-DETECTOR OPERATION

In this section we shall extend the results of Section [l for coherent optical
reception to include classical excess noise on the local oscillator field and
dual-detector operation. [t is convenient to begin with a presentation of
dual-detector results in the absence of excess noise.

A. Dual-Detector Coherent Optical Reception

Suppose the homodyne/heteradyne configurations of Figs. 2 and 3 are augmented
by the use of another quantum efficiency n detector on the previously unused
output port of their beam splitters, see Fig. 4. We take the classical output

field for this port to be

B7.t) = - (1-0) 2 (@e) + e Vo y(Ree) (70)

0
in the semiclassical model, and use the corresponding operator-valued

expression in the quantum model. Rather than treat the full multi-spatiotemporal
mode situation, we shall restrict our attention to the photocurrents

i1(t) and iz(t) obtained by spatial integration of the current densities

J](Y,t) and Jz(f,t) produced by detectors 1 and 2. We shall assume a

perfectly stable (i.e, deterministic) classical local oscillator field
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Eo(%ot) = FLO(‘;,t)e‘JZ“"ot (71)

with baseband complex envelope FLo in the semiclassical model, and a

Glauber coherent state quantum local oscillator with mean field
e = - - -j2rv_t
trp, of g(xst)) Flolxstle o (72)

with baseband complex envelope FLO in the quantum model. Under these
conditions the results of Section II can be used to show that the following
statistics apply.

Homodyne Detection In homodyning, the signal field is centered on v so,

°’
because of (71),(72), it is convenient to introduce baseband signal complex

envelopes via

E(X,t) = Fo(X,t)e 2" (73)

and -~
E((t) = Fo(X,t)e7am,t . (74)

for the semiclassical and quantum cases, respectively. Now we have, semi- Qfﬁ

classically, that

11(8) = en(1-c) L &R |F o (7ot) |2

* Zen[s(1-e)]1/2Re(j dxFo(x,t) FLO*(?,t))

d

welnli-e)] i o701
d

A

shot1(t)s
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and

iz(t) = Enej dxlFLo X t)l2
Ad

-ZEn[e('I-e)]VzRe(L dX F(X,t)F o (Rot))
d

2]1/2 (76)

+e[rie j'A dIlFLO(;’t)l nShOtZ(t) ’

d
for the homodyne photocurrents, where "shotl(t) and "shotz(t) are statistically
independent identically distributed zero-mean stationary white Gaussian noise
processes of unity spectral density. Equations (75) and (76) have the usual
bias plus mixing signal plus local-osc¢illator shot noise interpretation. Note
that the beam splitter phase shift between the output ports forces the mixing
signals to be 180o out of phase. Also, the independence of the local-
oscillator shot noises follows because they are generated from_ deterministic
illumination of two different detectors.

For the quantum case, we have that 51(t) and iz(t) measure the operators

%](t) = en(T-e)J'A d;[FLO(Y,tHZ

o

+ 2enfe(1-c)1"2Re(| @R (X.0F " (7,0)

A4
U amie (7 oey129172
+ en(1-s)[JAddx[FL0(x,t)| ] nLOq(t)
- ew-wu-s)jA IR (%011 (0, (77)
d
and
L(t) = enel dRIF0x0)12

A dos oo o

e

"

NPV YSPR
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+ene[jA leFLO(I,t)lz]]/anoq(t)
d

(t), (78)

reln1nle] &R 012 o0y

d

where nLoq(t), "vacl(t)’ n (t) are statistically independent identically

vac2
distributed zero-mean stationary unity-spectrum Gaussian processes., The familiar
bias plus quantum mixing signal plus local-oscillator quantum noise plus

n<l quantum noise interpretation applies to (77), (78). As in the semiclassical
model, the mixing term appears 180° out of phase in the two photocurrents. No
such phase shift appears on the hLOq term, as this noise arises out of the

direct detection of éLO' Indeed, except for scale factors, the local-oscillator
guantum noise contributions to i](t) and iz(t) are completely correlated. The
n<l quantum noises are, on the other hand, statistically independent because they
arise from different detectors. Finally, when the signal field is in a classical
state these quantum results can be shown to be in quantitative agreement with

the foregoing semiclassical formulas.

Heterodyne Detection For hetarodyning we use (58), rather than (73), to introduce

a baseband signal complex envelope for the semiclassical analysis. We then find
that

(8 = enli-e)] &P (%0017
d

+2en[s(1-s)]”2Re(j di'Fs(I,t)FLO*(‘i,t)e'iz"VrFt)
A
d

vela(1-¢) | 2472, (79)

‘A

dx|F o(x,t) |
d

shot1(t) ’

................................
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and
l . — =02
12(!:) = ensJ’A dx[FLO(X,t)I
d
-Zen[e(l-e)]]/zRe(J d?FS(Y,t)FLO*&,c)e‘jz""rrt)
! a
+ecnejAddI|FL0(‘£.t)121‘/2n5h0t2(t). (80)
r with interpretations as given following (75), (76). In the quantum case we
F]
use (61) instead of (74) and obtain the measurement operators
~ f —_ -
i(8) = en(1-0)|, &RF o(x,t) 12
. d
r - — - --
» +zen[e(1-e)]”2Re(J dRF o (X, t)F g (Ko t)e 32TV 1Y)
Ad
L - -1/2
+en(l-¢) [JAddxlFLo(x.t)lzj / nLOq(t)
1 2,172
=l 00| IF 0171 o ()
- +en[s('|-e)2-]J dﬂpw(;,t)lz]”znI (t) . (81)
- Ad q
8
. for detector 1 and
; :iz(t) = enejA d;{FLO(;,tHZ
d
-2enls(1-c)1/2Re(|  diFg(X,0)F (K, )e I F VIR
‘Ad
- e (r ey (2]
. verel], &) FL (%0121 20 o (1)
d
rela(l=n)e)  &IF (812120, o(e)
A4
. -en[.:m-e)z“L dxiF o (%,0) 121 o (e (82)

d

la: a'a‘a atalae eala’aleadala ot o e et e b a0 PP R P PP R P I R R Y DTN P
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for detector 2. In Eqs (81), (82) the interpretations and comments following
(77), (78) are applicable. The noise an(t), which represents image-band
quantum noise, is another zero-mean stationary unity-spectrum white Gaussian

process. It is statistically independent of nLoq(t) and n (t) for

vacj
j = 1,2, and appears with a sign reversal in 11 and ?2 because it arises

from the mixing term involving %I‘

B. Local-Oscillator Excess Noise

The extension of the results of Section IIIA to incorporate classical
excess noise on the local oscillator is extraordinarily simple, because of the
form the preceding results have been cast in. Specifically, for the semiclassical
theory we need only make the baseband local oscillator complex envelope FLO
in {71) a complex-valued random process with known statistics. Then the homodyne
and heterodyne results of the semiclassical theory, namely Egs. (75), (76)
and Eas. (79), (80), respectively, become conditional statistics assuming FLO
is known.9 Unconditional statistics follow, via Tfterated expectation [38],
from averaging aover the local oscillator fluctuations, as will be illustrated
below. In a similar manner, classical local-oscillator excess noise can be
injected into the guantum model by making °10 a classical-state density operator
for which FLO’ the average baseband local-oscillator complex envelope given the
Tocal oscillator is known to be in the multi-mode coherent state ‘?LO>‘ is a
complex-valued classical random process. The quantum homodyne and heterodyne
results, Egs. (77), (78), and (81), (82), respectively, are now conditional
characterizations given F ,. Unconditional statistics are again obtained by
averaging over the local oscillator f1uctuations.]0

To illustrate our excess noise results, and compare them with relevant prior

work [25], [28]-(30], we shall consider a single spatial mode/multi-temporal
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mode local oscillator, for which F 0 in the semiclassical theory and F

1/2

L0 in
exp(-j¢L0(t)) , where

L
the quantum theory are both of the form (PLo(t)/hvoAd)

PLO(t) and ¢L0(t) are classical random power and phase fluctuations. For
convenience, we shall assume that these fluctuations are the polar decomposition
of a stationary complex-Gaussian random process. We shall also assume that the
signal field, in both the semiclassical and quantum pictures, is statistically
independent of the local oscillator. Finally, we shall 1imit our consideration
to the differenced output currents il(t) - iz(t).

Homodyne Detection Under the preceding conditions we have the semiclassical

result

i(t) - iz(t) = en(1-25)PL0(t)/hv°

. 1/2 o = 36, (¢
“den(e (1-¢)P o (£)/hv, Aq] Re(jAddsz(x,t)e Lof®))

seln(1-e)P o (/v 120y o (1)

-e[naPLO(t)/hvo]Vznshotz(t) , (83)

and the gquantum result

P1(t) = 1,(t) = en(1-2¢)P 5(t)/hy

1/2 [ = = j¢ t
raenfg (1-2)P o (t)/hv, Agl Re(JAddsz<x,t>eJ Lot

+en(1—2;)(PLO(t)/hv0)1/2n t)

LOq(

+e[n(1-n)(1‘E)pLo(t)/hvo]]/znvacl(t)

~ela(T-n)eP o ()i 120 (2] (84)

vac2

s
B

[y
e
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1 In both (83) and (84), the first term on the right equals a mean bias current
en(‘l-25)<PL0(t)>/hvo plus a local oscillator power-fluctuation excess

noise en(1-2£)(PL0(t)-<PLO(t)>)/hvo. Both of these are exactly nulled when

i the beam snlitter is 50/50, i.e., when ¢= 1/2. The second term on the right in
(83) and (84) is the homodyne-mixing signal current; local oscillator randomness
both amplitude and phase modulates this term. The remaining terms in the

N semiclassical result (83) are the shot noises, now modulated by Tocal oscillator

power fluctuations. The remaining terms in the gquantum result are the local

oscillator quantum noise and the n<l quantum noises; these too are modulated
by the local ascillator power fluctuations. Note that when ¢ = 1/2 the local
oscillator quantum noise contribution vanishes.

Let us further specialize the quantum results by supposing that the only

)-1/2

excited mode of %S is the monochromatic plane-wave pulse (AdT for

Y

?éAd , teT , and that a. i{s the annihilation operator for this mode. Matched

S
filtering of the differenced output currents then yields a measurement of

T

o Wael ) CE () - iy(nla (85)

W

L where normalization by the electron charge has been used, for convenience, to
make the observation values dimensionless. We assume that the mean function

and covariance function of the stationary complex-Gaussian local-oscillator 1

random process i:iié
1 . R

2(t) = (P g(t)/hv Ay) /2 exp(-Jo 4(t)) (86) 1

are 5
m, = [(1-)n, o278 712 (37)

]

and

P Y
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R S P

PP P G WP WP TP WY DG 1




w38

le(f) = (y<N g>/A TIk(T) (88)

respectively, where <NL0> is the average number of local oscillator photons

T 172

present over A y Y is the fractional root-mean-square (rms) local

d
oscillator amplitude fluctuation level, and k(r) is a real-valued

normalized covariance (k(0) = 1). It then follows that

M = n(T-Zs)<NL0>

-

+ 4n[€(1-e)(1-y)<NL0>]]/2 <ag1> » (89)

and

Mo

<aM 2>

> = n(1-n)<NL0> * n2(1-Ze)Z<NL0> - 1sn2e(1-e)(1-7)<NL0><A551

2T 22
+ [n(1-2¢)<N g>/T] Idr[y k™ () + 2v(1-v)k(7)] (T-|<|)

+ (20/T)201 ! TR e
n/T)(1-2¢e)v(e(1 €)<N 5> (1-v)] 2 <agy>| drk(z)(T-[x])
T -T
+ T 2e(1ee )y ol Te2cagags [aek(e) (11201, (%0)
-T
give the mean and variance of the M measurement from which a signal-to-noise

ratio

Sl -5
SNR&' = <M> /<aMS> (91)

may be calculated. In Eq. (83), the first term is the average local oscillator
bias current contribution, and the second term is the average signal field
mixing term contribution, where ;S1 = (;s+;s+)/2 for ;S the annihilation

operator of the sole excited ?s ilode, In Eq. (90), the first term is due to

the n<1 noises n and n , the second term is due to the local

vac2
oscillator guantum noise nLOq , the third term is the signal field quantum

vacl

noise, the fourth term is due to the local-oscillator power fluctuations, and

...........

» L
NN L.
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the last terms are due to the random modulation of the mixing current by the
local oscillator fluctuations.

The previous dual-detector homodyne studies of Yuen and Chan [25] and
Schumaker t30] assume ¢ = 1/2, (1-y)<NLo>>>l, and a slowly fluctuating local
oscillator (corresponding, in our case, to k(tr) = 1 for|t|<T). In this limit both

prior studies find (in our notation)

cagp?
SNR;, = - (92)
i <ad 2>+(1-n)/4n
S1
whereas we obtain
‘551 52
SNRy = : (93)

<aagy >+(1-n)/An(1-y)4y(1+2<agag>) /4(1-y)

For small fractional rms local-oscillator amplitude fluctuations (y<<1),

(93 differs from (92) because of an additional noise term in the denominator
that is approximately y(1 + 2<;s+55>)/4. Physically, this term arises from the
random local-oscillator modulation of the mixing current, an effect neglected by
the earlier studies. In order for this term to be insignificant compared to the
signal quantum noise of a ¢ .erent state (<A$STZ> = 1/4), we require that

-

T<aS aS> <<] = (94)

i.e., the fractional rms local oscillator amplitude fluctuation must be much

smaller than the square root of the reciprocal of the average number of signal

1

field photons. This requirement becomes even more stringent if a squeezed state

is being probed, for which <A5$12> <1/4 prevails.
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In addition to exhibiting the potentially significant random modulation
'i of the mixing term, our formulation, (84), shows another effect suppressed
in [25] and [30]. This is the random amplitude modulation of the local oscillator
and n < 1 quantum noises by the classical amplitude noise of the local
] oscillator. Although this modulation does not explicftly enter the signal-to-
noise ratio , it does make the last three terms in (84) non-Gaussian random
processes, an effect which will modify digital communication error probability
r calculations somewhat.
* Heterodyne Detection The semiclassical description for the differenced output
currents in heterodyne detection is
° 1(8) = 1,(t) = en(1-2¢)P () /v
+4e~"[5(1"~')PLo(t)/hVoAdJ]/zRe(JA d;FS(;,t)e-j(Z“vIFt-°L0(t)))
' d
C | 1/2
' *e[n(1-€)PL0(t)/hvo] nshot1(t)
-e[nsPLO(t)/hvo]l/znshotz(t) , (95)

and the quantum description is

w7

. 1308) = T,(t) = en(1-25)P o (t)/hy

rden(z(1-)P_o(t) /by Ad]‘/ZRe(j dGF. (Kot)e 3 (Brvpptos 4(t)))

o} S
Ad

*En(T'ZE)(PLo(t)/h\)o)”anOq(t)

+e[<(1-n)(T-z)PLO(t)/huO]1/2n (t)

vac]l | !
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-eln(1-n)eP o (t)/tv 120 o (t)

+en[2£(1-e)PLO(t)/hv°]1/2nI t) . (96)

q

These results differ from the corresponding homodyne results, (83) and (84), in

only two respects. First, the mixing terms (second terms on the right in (95)

and (96)) beat the signal field to an intermediate frequency not baseband,
and so they sense both quadratures of the signal field. Second, the quantum
result (96) gains a noise contribution from the image band quantum noise through
an(t) . The local oscillator excess noise (and its cancellation when e= 1/2)
and the random modulation of the signal and noise terms by the local oscillator
fluctuations thus continue to be present in the heterodyne case, i.e., the
interpretations given for the homodyne situation aoply here as well. Once again,
the relevant previous work on dual detector systems [25], [28], [29] does not
include all the effects contained in our treatment; the random local oscillatar
modulation of the signal and noise terms is absent in the above analyses.

As an illustration of these omissions, let us compare our semiclassical answer (95)

assuming a deterministic monochromatic plane-wave pulse signal FS(Y}t) =
’S(AdT)-1/2 for QEAd,teT, with the corresponding ¢=1/2, equ.. quantum

efficiency result of Abbas and Chan [29]. The latter claim, in our notation, that

the differenced output currents consist of a mean current

<(11(t) = 1,(t))>= 2enT™ <N >7/2Re(ase'32"’xrt) , (97)

Lo

embedded in an additive zerc-mean white Gaussian noise process with bilateral

spectral density

S(f) = e21<NLO>/T . (98)

de have, using (86) - (87) in (95), that the differenced output currents consist

. . .
SN SNy & PP




of a mean current

<(iy(t) - 12(t))>=zeﬁr‘1[(1-Y)<NLO>]‘/ZRe(uSe‘jz““IFt) , (99)

plus a conditionally non-stationary zero-mean white Gaussian shot noise process

that, given the local oscillator power waveform, has covariance function

K(t,s) = ezn(PLO(t)/hvo)d(t-s) , ' (100)

plus a signal dependent zero-mean stationary Gaussian noise process

(1) = 2en(A ) PRelagly(t) - m ) IEVIFTD (101)

with covariance function

K.iu.iu(T) = Z(en/T)2Y<NLO>Ias|2k(T) COS(Z"VIFT) . (102)

Ahen Eq.(100) is averaged over the P . statistics it reduces to a stationary

Lo

whitg noise spectrum (98) , however the random PLo fluctuations make the

notse non-Gaussian, albeit in a minor way if +v<<l. The noise current

i"(t) comes from the random modulation of the mixing term and may present a

significant degradation. Consider a high quality (vy<<1), stowly fluctuating

Tocal oscillator (k(z) = 1 for |t|[< T) and the matched filter processor generating
T

M= e'1j0 (1,(t) = 1,(t))2" 2coslomy - aralag)] (103)

then the Abbas and Chan model gives a signal-to-noise ratio

! 2

SNRy, = ZnEaS[ ,

whereas we have that

—w—w
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SNR,, = - (105)

1+ ny|ag|®

As in the quantum homodyne example given earlier, at high average detected

signal levels there is a very stringent requirement on local oscillator

amplitude fluctuations if SNR Hegradation is to be avoided.

IV. DISCUSSION

At this point, we have clearly established how the quantum theory for
coherent optical detection subsumes the familiar semiclassical statistics in
a natural way. We have also seen that the quantum approach is essential for
studying the photodetection statistics of non-classical field states. There
is now considerable interest in a particular class of non-classical states,
called the two-photon coherent states [14] or the squeezed states [15]. These
states are in essence minimum uncertainty product states for the quadrature
components of the photon-units field operator E(;,t). In particular, for a
single field mode with annihilation operator 3, the two-photon coherent state

[83u,v> obeys the eigenket relation
(va + vat)|8su.v> = 8|8su,v>, (106)

where g8,u,v are complex numbers and u,v satisfy |u|2 - [ul2 = 1. With
51 = (a +2a")/2 and 32 = (a - a')/2j denoting the quadrature components of a,

we then find that the state |8:u,v> gives

[u-v|?/4, (107a)

A
(>3
()

—

v

"

and

lu + v|/4, (107b)
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When u,v are real valued, (107) implies that |8;u,v> satisfies the

Heisenberg relation

<A512> <A522> > 1/16 (108)

with equality, as does the familiar coherent state |a>., Unlike the coherent

h state, which gives <A5.[2> = <A522> = 1/4, (107) shows that there is an

asymmetric noise division between the quadratures (a noise squeezing) in the

state |8;u,v>, with the law-raise quadrature being less noisy than a coherent
i“‘ state. This noise reduction can be used, in principle, to effect important
perfaormance improvements in optical communications [16] - [19] and precision
measurements |20] - [23].

1 As yet, there have been no experimental observations of squeezed state
light. Theoretical studies, which employ varying degrees of idealization,

indicate that such states may be generated by degenerate four-wave mixing (DFWM)

[39] - [42], as well as a number of other nonlinear optical processes [14], [15],
[43] - [46]. We are presently working on a continuous-wave OFWM experiment using
homodyne detection to generate and verify the quadrature noise sgqueezing. In
this experiment, a single frequency-stabilized laser will be used to provide

all the input beams to the four-wave mixer, as well as the local oscillators

for dual-detector homodyne detection. The results of this oaper permit the
expected photocurrent statistics for this experiment to be derived, including

the effacts of the laser's residual amplitude and phase fluctuations. Specifi-
cally, an iterated expectation approach is used, as in Section III. The photo-
current statistics are first obtained assuming the laser outout to be a par-
ticular coherent state. This entails a calculation of the four-wave mixer
output state, along the lines of [40], followed by a calculation of the sort

performed here in Section IIIA. To average over the input laser fluctuations,
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we assign to the coherent state value for this laser a classical probability
distribution. We can then proceed as in Section IIIB, except that the state
of the signal field operator in the homodyne apparatus is now dependent on the

4

coherent-state value of the local-oscillator field in that apparatus, because

both fields are derived from the same laser.
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{ Footnotes
- 1. The convention we use for this Fourier transform is necessitated by ]
the accepted quantum-optics definition for what constitutes a positive- : :
b frequency field. 1
1 2. For a photomultiplier tube, the internal current gain amplifies the current *
we are analyzing by a sufficient amount to warrant its treatment as a classical

entity. In the coherent optical detection cases that follow, the mixing gain

produced by the strong local oscillator has a similar effect, see [22].

Py

3. A classical state is either a Glauber coherent state or a classically random
mixture of such states. In either case, the density operator o has a
proper P-representation (17). The terminology arises, see below, because a
classical state o gives rise to the same statistics in quantum photodetection
theory as found for a classical field in semiclassical photodetection theory.

4. Because our idealized detector model neglects internal noise sources (dark 1
current shot noise, thermal noise, etc.}) N from Eq. (21) corresponds to the 5;:;1
output of a pulse-discriminator/counter applied to the output current .
T dx J(X,t). In other words, Eq. (21) models the output of an ideal (unity )
‘A
ngntum efficiency) photomultiolier-tube/pulse-counter setup. T

w

Qur choice for the beam splitter transformation agrees with that employed in
[18], and implies that the field leaving the other port of this optical element ]
is —(T-e)T/ZES(Y,t)+e1/2ELO(Y,t). Other beam splitter relations (see. e.g.

{25] , [30]) are eguivalent to ours after redefinition of the input and

output planes. {
6. A critical aspect of the strong local oscillator condition acting through the RER

measurement operator [48) is that the mean local oscillator field and its




10.
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quantum noise both contribute to J, . through the direct detection

term, but only the mean local oscillator field (not its quantum noise)
contributes to Jhom through the mixing term.

Very interesting noise reductions can accrue when the signal and image

bands are quantum-mechanically dependent [22]..

Because the in-phase and quadrature components of ?s are non-commuting
observables, the image band noise enters into heterodyning in order to enforce
the Heisenberg uncertainty principle on ideal simultaneous observations of
these incompatible quantities (see [36], [37]).

Implicit in this conditioning statement is the fact that the local oscillator
must, with very high probability, remain sufficiently strong to ensure the
validity of the Section Il theory. Alsc note that the signal field statistics
may depend on the value of the local oscillator field, such as occurs in a
laboratory experiment when the same laser is used to obtain both the signal
and local oscillator beams (see Section IV).

The Tocal oscillator fluctuations must not be such as to invalidate the

Section [I theory for any state that occurs with appreciable probability.

Ll
Also, the signal state (density operator) may depend on the value of the local
oscillator field, if, for example, both beams originate from the same laser

(see Section IV).-

For example, to keep this added noise below 10% (in standard deviation) of

the coherent-state signal quantum noisa when <33‘;S> = 104 , we can tolerate no
more than 0.3% local oscillator amplitude fluctuation. This limitation may

be significant in precision measurement applications for which signal-to-noise

ratios far in excess of 40dB are sought.
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Fiqure Captions

Fig. 1 Geometry of an idealized surface photoemitter of active region Ad'
Fig. 2 Configuration for optical homodyne detection.

Fig. 3 Configuration for optical heterodyne detection.

Fig. 4 Configuration for dual-detector coherent optical detection.
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APPENDIX III
DEGENERATE FOUR-WAVE MIXING

LINESHAPES IN SODIUM VAPOR UNDER PULSED EXCITATION

Prem Kumar

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

Degenerate four-wave mixing (DFWM) lineshapes are investigated
in sodium vapor near the 02 resonance line using nearly Fourier
transform limited puises. At low pump intensities sub-Doppler reso-
lution is obtained. When the Rabi frequency associated with the
pump intensity becomes equal to the ground state hyperfine frequency
separation of sodium, each component of the double-peaked DFWM
spectrum further splits into two components each. Adiabatic follow-
ing model explains the near-resonant intensity dependence of the

DFWM signal but is insufficient to explain the whoie structure.
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Resonant degenerate four-wave mixing (DFWM) has been shown to be an efficient
technique for the generation of phase conjugate wave fronts1. In backward con-
figurations, where the two pump beams as well as the two signal {probe and con-
jugate) beams counter-propagate to each other, the DFWM spectrum is Doppler free
and has been used for high resolution spectroscopyz. However, true spectral
information is obtained only when the pump beam intensities are small compared
to the saturation intensity of the resonant medium. At higher pump intensities,
complicated line shapes are observed; in particular, the line broadens and splits
into two components. Several experimental and theoretical studies of this
behavior have appeared in recent 1iterature3. Most of the studies have employed
cw lasers and hence steady state analyses have been used to explain the observed
behavior. !

The early experiments on resonant DFWM employed pulsed dye 1asers4. DFWM

spectrum in this case is also complicated and shows a dip to zero at the line

center. Bloom et al. were the first to observe such a line shape. In the pulsed
case, fluctuations (pulse to pulse energy, pulse-shape, and center frequency

fluctuations) and other nonlinear effects such as self focussing complicate the

line shape even further. Recently we have measured the DFWM line shapes with a
pulsed dye laser system which was stabilized in center frequency and bandwidth.
Qur control of the fluctuations in the DFWM signal was essential for the measure- _
ment of the photon counting statistics of light generated via DFWMS. In this i
letter we describe the results of a study of DFWM line shapes with such a source.

The experimental setup is essentially the same as that in Ref. 6 and is
shown in Fig. 1. An externally stabilized cw ring dye laser (sub MHz line width) "
is amplified through a chain of puised dye laser amplifiers pumped by the smoothed
output of a Nd:YAG 1aser7. The output pulses of 4 ns duration with typically

10-20% energy fluctuations and a total line width of 200 Miz which is approxi- i

mately twice the Fourier trarsform limited line width are used to parform DFWM.
Y




About 10-50 Mw/cm2 pulse intensities are available from such a system. Backward

i DFWM geometry is employed with orthogonally polarized pump beamss. Phase conju-
gate (PC) signal whose polarization is orthogonal to the probe beam (PB) is sepa-
rated using a polarization beam splitter (PBS) and directed onto a photomultiplier

i (PMT) whose output is sent to a boxcar integrator. The output of the boxcar which
is proportional to the PC pulse energy goes to the y-axis of a chart recorder
whose x-axis is swept with the dye laser frequency. The boxcar whose gate dura-

i - tion is chosen to be 80 ns is triggered optically. The PC signal is first delayed
6ptica11y and then electrically using a 50Q cable inserted between the PMT and
the boxcar in such a way that it arrives in the middle of the gate duration.

E DFWM is performed in sodium vapor generated in a heat-pipe oven. It is main-

tained at 310°C implying a sodium vapor density of 4 x 1014 atoms/cm3 for the

measurements reported in this letter. 2.2 Torr of helium is used as the buffer

gas. A1l the beams arrive in time coincidence at the sodium cell. The dye laser

T TS T

frequency is scanned over 10 GHz across the sodium 02 line. The spectra obtained
in this way are shown in Fig. 2 as a function of the pump beams intensities which
are kept the same (to within 10%) for both the pumps. Appropriate neutral density
! filters are introduced in the probe beam path to avoid saturation of the PMT. The

probe pulse energy is kept less than a few percent of the pump pulse energy'in all

cases to avoid pump depletion.

L At the lowest pump intensities used of 0.3 kW/cm2 (all relative intensity

9

measurements are + 10%)°, the line shape consists of two peaks which are 4.5 GHz

apart as shown in Fig. 2a. Also shown is the fluorescence observed in a direc-

b tion making a small angle (=1°) with the PC beam. The pulse widths (FWHM) are
0.74 and 0.83 GHz for the lower and the higher frequency pezks raespectively.

Therefore sub-Doppler resolution is obtained at these pump intensities even

though the peaks occur away from the center of the Doppler-broadened line of

width 1.8 GHz.

R DL TS
AN afiataante™ "



As the pump intensities are increased to 0.6 kw/cmz, the higher frequency peak
splits into two components separated by 1.3 GHz as shown in Fig. 2b. A further

increase of the pump intensities to 1.9 kN/cm2

leads to a splitting in the lower
frequency peak as well, as shown jn Figs. 2c and 2d. In Fig. 2d the reflectivity
at the highest frequency peak is 0.7%. The reason for such a low reflectivity is
because a relatively large angle was chosen between the pumps and the probe beamz.
This choice was dictated by the low background requirement in our DFWM quantum
noise measurements reported earliers. With smaller angle and higher pump intensi-
ties (at least an order of magnitude higher than those reported herein) we have
observed reflectivities as large as 700. Under these conditions the conjugate
Pulse duration is significantly shorter than the probe pulse duration. A system- :
atic study of this behavior has recently been reportedlo. :

At still higher pump intensities of 3-10 kw/cmz, only two peaks remain as
shown in Figs. 2e and 2f. A further increase of the pump intensities leads to a
broadening and weakening of the lower frequency peak which is consistent with the
observations of earlier workers. A slight broadening and weakening is already
observable in Fig. 7g. Jabr et a1.4 did not observe the lower frequency peak
with the same choice of the pump and probe beam polarizations that we employ.
Their pump intensities were at least an order of magnitude larger than ours. At
high pump intensities, <21f-defocussing of the pump beams on the lower frequency
side of the resonance causes a reduction of the actual pump intensities in the ;
mixing medium, which results in a lowering of the PC signal.

The splitting of the DFWM lineshape (Figs. 2b-2d) was not observed in
earlier experiments4. This we believe is because we have used stable center S
Trequency nearly Fourier transform limited pulses for the abcve measurementss.

Furthermore, at low intensities sub-Doppler lines whose widths are limited by

power brocadening are observed.
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The nonlinearity responsible for DFWM in sodium vapor is due to resonantly
enhanced electronic Kerr effect. Grischkowsky et a1.4 used the adiabatic follow-
ing (AF) model for a two level atom under pulsed excitation to derive an expres-

- sion for the DFWM reflectivity as a function of the pump intensities and detuning.

When the AF conditions are satisfied.]] the third order nonlinear susceptibility
is given by
(3 - - Dl (1)
h3(v-vy)® (14a%/n%)3/2

where y is the electric dipole moment of the two level atom, A is the pump fields
amplitudes (assumed equal for both the pumps), v-v, is the detuning of the DFWM
frequency from the atomic line center frequency, N is the total number of atoms
per unit volume, and A§ is the normalized saturation intensity given by

Pe = h|(v-vo)|/u. The DFWM reflectivity is given by R = tan2 kL = <2L2

wiere ¢ = Zwvx(3)/2cn. n is the linear refractive index of the medium, L is the
interaction length, and the approximation is valid under conditions of weak
reflectivity.

As the pump intensities are increased, the DFWM signal saturates because of
the saturation of x(3). This is verified for a detuning of 2.3 GHz where the AF
conditions are satisfied as shown in Fig. 3. DFWM reflectivities were measured
from Fig. 2 at a detuning marked by the arrows. Dots are the experimental data
and the solid line is a fit to Eq. (1) for I_ = 7.8 kW/cm® which agrees well with
I = eoc(h(v-vo)/u)z/z = 2.1 kN/cmz. Thus a good agreement is obtained with the
Ar model in its region of validity.

The detailed lineshapes cannot be predicted using the AF model as it is not

3

valid sufficiently close to resonance. Steady state models™ developed to explain

cw DFWM lineshapes cannot be applied in the transient case of our experiment.




The splitting of the DFWM lineshape as shown in Figs. 2b-2d occurs when the Rabi
frequency corresponding to the pump intensities is close to the ground state
hyperfine splitting of the sodium atom which is 1.77 GHz. Moreover, the splitting
of the lower frequency peak occurs at approximately twice the pump intensities

than that of the higher frequency peak. This suggests that the multiple level

nature of the sodium atom is playing a role. This is not surprising because the

spectrum of the pulses used in this experiment is much narrower than the ground
| state hyperfine splitting of sodium. For our 200 MHz, 4 ns pulses, sodium can be
' well modelled as a three level atom of A type. The DFWM mechanism in our experi- ’
! ment is more complicated than it seems because at low pump intensities of
Fig. 2a, although sub-Ooppler resolution is obtained, the peaks are not separated
b by 1.77 GHz as would be the case in a cw DFWM experiment when the spectrum of the »
Taser used is much narrower than the ground state hyperfine splitting. A detailed
comparison with the theory can only be made when Maxwell-Bloch equations are
solved in the transient regime for the backward DFWM configuration taking the i' :
three Tevel nature of the medium into account.
This research was supported in part by the 0ffice of Naval Research. .
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All intensity measurements refer to peak intensities of the pulses which
are spatially in TEMoo mede.  The absolute value could be off by as

much as a factor of 5.
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the AF condition is

-1 A0 2
ATdA/dt + T |1 +{uA/h(v-vo)}

<< l\)-vol E+{UA/h(V'VO)}2] s

'z 10 Mz and Ju-u | = 2.3 5Hz.

which is satisfied for 4 ns pulses with Té
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Figure Captions:
1. Schematic of the experimental apparatus. YAG = frequency doubled Nd:YAG
®
laser, DL = cw dye laser, M = total reflector, BS = beam splitter,
DET = detector, HWP = half wave plate, PBS = polarization beam splitter,
PMT = photo-multiplier tube, PC = phase conjugate beam, RP = backward
®
pump beam, FP = forward pump beam, PB = probe beam.
2. DFWM lineshapes at various pump intensities. Vertical scale is arbitrary
and is linearly proportional to the DFWM signal, plotter scale factors are ®
labelled. Also superimposed are the fluorescence spectra in parts a, b,
and g. Pump intensities are labelled in kW/cm2 in each plot. Start fre-
quency in parts f and g is slightly shifted. °
3. Dependence of the DFWM signal on the pump intensities.
o
[
' °
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